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CHAPTER I

INTRUDUCTION

The one and ý.wo-way classification models with a covariate have been

treated from many points of view. However the question of the covariate

regression parameter changing from block to block has not been treated so

extensively. That such changes miglht occur is certainly logical. Granting

that "yield" might increase linearly with, say, temperature, it would not

be at all surprising to find certain blocks, perhaps materials, to be more

responsive to tenrerature than other blocks.

In the analysis of variance a single regression effect 'costs" a

single degree of freedom. If the regression effects change from block to

block it will be necessary to estimate, or adjust for, as many regression

effects as there are blocks, say r. Thus the additional "cost" of block

regression effect differences is r-l degrees of freedom.

As a tool in evaluating the adequacy of a one-way classification model

with a covariate, Robson and Atkinson [7] propose an individual degree of

freedam test for the homogeniety of regression coefficients. The save thing

car. be done 4n the two-way model. And in a two way model with individual

regression coefficients in th. blocks a single degree of freedom test can

be constructed to test fox regression coefficient differences among the

treatments. An easy way to construct these tests is to mimc Scheffe's

motivation (8) of TuIrey's single Jegree of freodom for nnn-additivity (9).

If the model under consideration in Vij w + s + vj - x4 J + ij and
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one is concerned that the coefficient P might be changing from block to
block, the procedure is to insert a non-linear :-rm of the sort Ov.x.. into

:i iJ

the model. Then this expanded model is approximated by the linear model

VV ++ 0%) x where v. is the standard leastSY~ij I i + 81 + j ji + 'ij whre I

squares estimate of v. under the original model. It is then the sum of3

sqaiares for the dummy coefficient 0 adjusted for V 0, v, and * which is

used to test the adequacy of the original model. The fact that the test

is neither exact nor powerful does not keep it from being very useful in

the field of model building.

Granting that one has adopted a model with individual regression co-

efficients for the blocks and fixed effects for the treatmeats, one then

finds the literature preoccupied with eliminating the effects of blocks

and covariates in order to focus atterV.ion on the treatments. Much of this

work has been done by r. P. Cox (1]. Noteworthy also is Zelen's adaptation

if this problem to incomplete block designs [10].

Traditionally a covariate has beeh considered to be a nuisance factor

to b6 eliminated. Perhaps the covariate has been the victim of an unfriendly

press. if the covariate takes on a limited number of discrete values as in

Cox'r first, second, and third units of tite El] the covariate model is

actually a shortcut to a factcrial analysis in which all effects of the

covariate factor other than linear effects are confounded. These effect3

may be of great interest. Even when the covariate is uncontrollable, it is

quite possible that it is known. Of course if all expcrimental units show

tLe same response to the covariate, that is if Yij M Iu + ei + Vj + xij + 'ij

then if high yields can be considered to be good, it takes no great mathemat-

ical calculations to say "the higher the X the better" or "the lower the X

the better," and likewise, "the higher (or lower) the v the better." Hut
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when the regression coefficient depends on the block, the value of the

covariate can become quite important.

Consider three blocks with fixed effects (taken to sum to 0) of -1,

0, and +1. If their corresponding block regression effects (also taken to

sum to 0) are +1, 0, and -1 (that is, b1 = -1 + X, b2 = 0 + OX = 0,

b = 1 - X), then the question "Which block gives the highest yield?" can

be answered only if we know the value of X. Clearly, if the covariate is

less than 1, the third block will be preferred and if the covariate is more

than 1, the first block will be preferable. Py taking the block regression

effects to sum to 0 the possibility of a large general regression effect

with the covariate has not been eliminated. That is, in the model

yij = 4- +. + Vi + Oxix + 4jxij .+ Eij the value of * may be very much

larger than the values of the 0.'s. Then we would say "the higher the X

the bettar--but if X happens to be less than 1, try to use block three and

if X happens to be greater than 1, try to use block one." It is not diffi-

cult to see the userulness of this sort of i ,formation which is based here

on some insight irto the "true" parameters of the model. In our real world,

of course, we will have to estimate these paramxte.-s and we shall be interested,

not only in which estimated block effect is larger at any X, but in whether

these block effects are significantly different at any particular value of

X in light of the normality assumption made for the cij'S.

Our interest in a significance level arises from a.a assimption of a

less function associated with the choice of block. If blocks represent the

type of material it is logical to assume that some types are more expensive

than others. Even if they are all of the same price, keeping the materials

separated might be expensive and should not be undertaken unless we are

reasonably sure that the blocks are really different at some, if not all,

_____ .___
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values of the covariate X (perhaps the temperature or humidity). This

thesis does not direct itself to any sLecific loss function; hence, it is

left to the practitioner to bridge the gap between the loss function in-

herent in the application and the significance level of the test.

Returning to the previous example, consider the block and regression

effects given above to be estimates rather than known parameters. That is,

it.tb = -1 + X, b2  0, andb 3  1 - X

b
AtI3

b2

21 X÷

eNow the question to be answered is "for what values of X are blocks

TI. significantly different?" Surely the point X = +1 will not be one Cf these

points, for at that point the block estimates are exactly equal. We shall

expect, intuitively, that the answer to the above question will be the real

line with an interval about the point X - 1 deletnd. And if that interval

included the whole real line the answer would be that the blocks are nowhere

significantly different. Thia higher the significance level, implving that

there is a greater penalty for wrongly reporting block differences, the

larger wo shall expect that interval to be.

The fact that the most conventionally constructed test for b.ock differ-

enoes is very capable of answering the above question, not with one interval,

but with two disjoint intervals (by saying that blocks are different every-

where along the real line except within those two di3joint intervals) is per-

hape the moot interesting aspect of this thesis.
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Knowing the values for X at which blocks are significantly different

enables one to know when it is worthwhile to be particular about blocks.

The estimates of the block effects tell which block to favor at any given

value of X. No consideration is given in t is work to the problem of which

blocks cause the difference when difference results.

A test is sought, thon, for a null hypothesis of "no difference

between blocks when X < x0  under the assumption of the model

yij4 ai + x ij + jixij + Cij

S02
i = l, 2, ... , t; j = 1, 2, --- , r; cij N HID(O, a)

The p, F andv are unknown constants. p represents a fixed mean

effect, 6. represents a fixed treatment effect, v. a fixed block effect,
1

*,a mean regression coefficient, and * a block regression coefficient.

In the manner of other two-way models these effects are not coqpletely

estimable aid wp, will need to place three conditions on thom. The usual

con.dition i 0 is made to make the eatimates of the eJ unique. But

two more conditions must be taken to discern the v + * X effects fr~.s the

fixed mean effect p and the regression mean effect 0X As usual we have

a great deal of choice regarding these conditions. The criterion is generally

mathematical neatness, but iik this problem the conditions which result in

mathematical neatness coupiicate the parametric statement of the :.ll hypo-

thesis. The -onditions we shall use are. (x0 - jx )0 j 0 ard

(v + x* + x.)- 0 where x, xi. Note that when x,

for all j and J' the first of these conditions siarlifies to 4 . , 0 and

conqequently the second sirtlifies to G ( x ) + 0 . By defining

V =i + ýx. the second condition further simplifies to 1 C 0
j i jI



s moc ca, c a, x * . fo a 11 j an :ij h a 11 1) by pre-.7niLc

ftfl y, not. wAith the thouc;4ht th a i this, case w-4.1. cormr frcequ--nt-W Jn rpracr~i"x,

bm~it rather to illuntinate various Uftporet~ical -,speCts. of f-he pro'3.jemr. A fte r

%:Ull con,,i~c rat~.n- of tht's -,Pecia cas it will. hki shoý'7; thti! (; ýent~ra.

case fo~ lows by erprupriaqtrý itroduction of. ria' rix rn.iltip nie½rc.

It should not cause u-oncern thrat in the general case the odun

used to ý,ol~ve the. norrn-.0 ecre~i'ton; dopend on'r T'th nuUA t:ei to

be tested also Oerxnds *-xi j + x: , o 'c vt 2Ev., -w-5

Ha: Vj +x

Vi-,en ~ t,ýf iLtic j. IFoi.d t-o tr-st the hypothiemis X- tha'- tf~st-

will b'. inverted to -ieid the set of X's for which the test would be rejecteed.

This test inverrion viill not yircid a -orf-'dence set -cl'use the inverion

does not extend to all att,7nabzhpt~ss For- etue f-.ndls pfrc'-

able va Lues of A~ if v.+ X. 0 b~ not i f v.* .=i~cnde e

set is of value when a paramieter is; unknown. In L-~is prrcýlern the covariate,

.4, is krc'wm an~d wf-. *irt' int-rncs:,tad inqtead in, which, X's will cause lifferences

it,, che I:1~ Iienre, j x ip jto the- set, then we have reason to believe

that aSS gnrierk1t .,t bI.ck vwt~l *Uf2A e.' wnenI1~ X x

I.7



CHAPTER .I

ThE SPECIAL CASE OF EQUAL

COVARIATE BLOCK MEANS

The least squares estimates of the block parameters are sought as

a basis for a test of their difference. The experimental model under con-

sideration can be written

Yi = V + " + KJ +8ra + +E)i Bjrjjij rjaij Eij

i 1, 2, .. , t; j 1, 2, .. , r; I Kj = i 0; j 0

r1) ai _. 0) aO 2  I

I ~xij-x.j
ii . .

ai = T

where x.. is the value of the covariate X in its original units and assuming,1]

for this chapter, the condition

x.j = x'if for all j, j'

1 IX.j Wg xii
j t~i

In referring to chapter I, K - v + Sx j and 8 - 4 . The purpose

of this reparameterization ib. 'o make K and 8 independent. The purpose

of factoring (xii - x J) into r and aij is only to aid in analyzing sourvas

of variation after a test is derived.

7
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Let

Let A (a (el !' *, a a
aijtxr ,2 a3, r

That is, the vector a has elements aij . Then let

a2

Ad

a
-rt

Letrx rl 8 ,tl.
K 02 2

diag (r.) KRrxr j rxl K-rxl = " txl

SYij rtu + t ij + [ air
j j

~Y m, tvi + ti + Ci

= + r 2 + r2 + r j*i ajyij rj ' aiii + •j j + i 8i z

Note that the condtions8 I 0 and tj o were mod in forming the

above relationships, but the third Condition 0 B - 0 has not yet been used.

J



Let 8,, ý, p, , d P be the unbiased estimates of the parameters of

the model r'itaining the conditionc restricti.ng the parar'ters. That is
SA A

1' 0, 1' 6 0, 1'1 = 0. Then the normal equations become

(1 A) A A

S') , j + e + -!AR0 + i -- AR1
r t -r r - r -

-(1 P-
t +

A A A A2  ~ 2
(1) RA•y = RA'e + R2 a I = RA'. + R 2 + pI_

Solving:

(2) RA' [-(I 1.')- + - 1 ^
t -r r J =R RAO r RA'AR(. + *1]

Subtracting (2) from (1)

1- 1 A A 1

RA~y - RA'[f(il 6 Ir)- CJ] R RA2AR1"•(O +

Assuming the matrix [R2 - 1 RA'AR] to be nonsingular*
r

^ - 1 A)-IR-I]1

-8+ 41 -[R-I(I - r1 I')l-1RAqi RA' (It @ ir)X]
rr

and

1 + A A 1 1J) a i 1 A'A)-1-1](RAWI 1

r - r r t r

This is the first time the condition - 0 or j- 0 has been utilized,

and it is used here to eliminate *.

lA 0 1 1 l.( - [t(1I • It)- - z nJl •
- teetpr et rdxt

*See Appendix.
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Note t~hat RAý(Trt -R -I AAR We assume

j ' NI1(0, U2• qence,

* 2 3. -1( 3 l7( 1~ J)N A (I -J)Rk (I - AA)( r)J

Likewise,

N l21(1 1 J
- - t r

We shall be interested in block effects at x0 , so we seek the distri-

bution of K. + 6.X0 - X.), and sincex . x , for all j and j', the

vector of block effects at x0 is K_ + (x0 - . Letting z 0  , x0 - X j,

we ieek the distribution of K + z0.

If the independence of an5 6 is not apparent from the manner in

which they have been conotructed, it can be easily verified by matrix

multiplication.

, -(I 0 )]-l 1I)- -
"drt r t r t -t r) rt rtxr

Hence,

A + 0+ z0,2(l IJ)r [.II + z02R1 (I - JA'A)R
+~~~ ~~ ZO-1 Ntc+ I)'

The matrix (I - -J)R- (I - 1AA)-IR-'(I - 1 j; will, of course,
r r r

figure heavily in the solution of any problem involving bL,* 4ifferencee.

Some properties of thW s matrix are explored in the appendix.



CHAPTER III

AN EXACT TEST FOR THE HYPOTHESIS

IN THE SPECIAL CASE

In terms of the parameters cof Chapter I where yiJ = j + e, fvj +

*Xij + *jXjj + i a statistic is desired to test the hypothesis that

Vj + x0 j = 0 for all j . In terms of the parameters of Chapter II, this

hypothesis becomes K + (x0 - X.j)a - 0.

In the special case of equal covariate block means where x0 - x.

0 -xj, -z , the null hypothesis of no difference between blocks can

be expressed parametrically as

"Ho: K + Zo= 2
vs. Ha: +z 0 8 z 0

From the work of Chapter II we see that

2 1 21S+ z0ft n- N[ 0,_ a(I J (11 + z M)(I - -- J)]r
(-r t 0O r

under undor H0 where M - R (I -A R Thus under the null hypothesis

rr

To test the null hypot-hesis, then, we seek a statistic with a well

known (i.e., tabled) distribution under the null hypothesis and with

expectation under the alternate hypothesis dependent on (K + zo8 )'(" + xO.)

or on (S + s0 i)°A(E + u-(8) where A is a positive definite matrix.

11
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Such a statistic is available since

1 T( 1 A 1 + 2 (I 1) M I 1 A 2-2 T(z 0) (K_ + I + z(I - -J)M(I -0J)] (r_ + z 0 9) 't Xr'l'X(z)
o a

where

2 2 t r 0ir r
2(Z) oCK+Z•,[ 0I - -J)M(I---j]( +0)

The matrix of this quadratic form is a nonsingular generalized inverse of
A A

the vardance matrix of the random vector K + Z09

To verify this distribution note that

1 1 2 1 1 1 2 1 11
(I J) [L I + z0M] (I -rJ) = (I -- J) [L I + z (I -- J)M(I -- J)](I -- J'r t 0rr t 0 r r r

and recall that wheri a vector

11)V - 1 j1
w*= (I - - J)w ' N[l, (I - -J)v(I J )

then

_ W*,V- 1w = w' (I - 1 J)V-1 (I - 1 J)w 2
2 - 2- r r -II n -l_

a r-,a

This statistic is independent cf the mean square error so a true

F-statistic can be formed which will 'qliminate the necessity to know the

2
error variance a or to estimate it from other information. The independence

follows from the fact that the sum of squares for error is constructed

orthogonal to those for K and those for F e -nce, MSE is independent of

an. function of the and v wectors.

Having produced a statistic which will test the hypothesis, we would

be satisfied if we were interested in =*-y one value of X(or Z). But,

of courset we wish to produce a set of x'e for whi h the null hypothesis

Can be rejected. It is in this regard that the statistic T(zO) becomes

=wieldy.
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2
Note that if C r1 is a critical point for X statistic with r-l degrees

of freedom, then we would be interested in solving the equation T(z) -2

for the z points at which T(z) equals the critical point. With those values

of Z we could deduce the set of points for which T(z) > aCT from the

continuity of T(z).

~11Decompose (I J)M(I --I J) into eigenroots and vectors by lettingr r

=~l 0
r-1

(I J) M(I - Y ir r i='-

=0 i 71 ii

Note that there is one zero eigenroot which corresponds to the vector

1/-l

Then T(z) can be expanded in terms of these care eigenvectors.

( ~ 1r-l 1-
T(z) - (A_+z . + Z 2 Yi VPi (K + zO)It

- (IC + z_) i-l (. + ziYi i + r11' (K_ + Z.S)
|i=l tr Y

- + A;)i A t^l . .. . .. . .

r-l z'ikjE + 2ZK'V.4B + Z

2 ,

Each of the z--l terms is a ratio of two quadratic functions iii x.

Hence, if r-2 there would be only one term and we could solve the equation

T(z) - a2Cr-1 getting at most two solutions zcl and .c2, I.' -: 4 We

would need to check the magnitude of T(i' and any one point: probably T(O).

Without loss of generality assume that T(O) < aC 1 . Then if 0 t (a cl, a 2

2 c1
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'o: I

c..i c--!it~ ~ r i o i n ; 'L:~ th i~ n f 12dr (/,.t

f ~ ~ ; , :, 1 ?

Arrootr' aqa in. et~ic,1 uc aht~'y~ Crtia -e wn icA ath

4- +~

2 J
z

Arid C~~.- m )L;aciia , il kda

most to va~j~ fOL . 1~o: ~ ~vCor±2.flv~ixwe ~;' Dh c: iIlb

siani~~~~~ (m) crrl ýfCyct v ~ h . ,cw'v K 2ju< 2 ~i5 E

that 4 1r~3
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Then

Va to-
0 Z Kea'• z -t-•- 2y_'K =t7

where z is a maximum ox minimun of the function T(z).

1 Ay4(__

m 2K L1 t .Y)

The discriminant = - t+ ] ' 0

and

z =0 if.Kea 0

Hence, if c'• f 0, T(z) has two extreme points zc < 0 < zc2 and the

single extreme point 0 if K'e - 0

If r-2, one of the extreme points yield a minimum of T(z) , 0 . If

r > 2 it is doubtful that T(z) will actually attain 0

Then, if ý'8 > 0, T(z) has two real extreme points and we can sketch

the illustrative curves of Figure a.

Y

0

Y

-- .

Figure a.
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And if 0.'0 < 0, T(z) will yield curves such as those of Figure b.

T (ZI Y
0

Z÷

z-..)

0

Figure b.

A$dif • -0, the shape is determined by whether < or

toc <See Figure c.

•YM

0

,3,

ii
|V Z -I----------

all
- - - - - -- - - - - - -
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In all of these figures a critical point for the statistic at any

Sis the point (z0, I a 2C Thus a critical curve for the function T(z)
00 r-l

would be a straiqht line a 2 units above the origin. Any horizontal
r-1

line which intersects any of the curves intersects it twice giving rise to

end points of a critical interval (z z2). (The only exception to this
ci' c2

generality would be a line - units above the origin in Figures a. and b.Y

which would produce a critical interval of the form - z ) or (z ,+a).]
c c

Let nT be the set of z's such that T(z) > a C That is, if

z c S , block effects are significantly different when Z = z. Let U)

be the totality of points on the real line.

Then when yi =y, for all i, i', the set r (z

"T• •- (2cl' Zc2 ). The symbolism - - (zcl, zc 2 ) is used as shorthand

notation for (-, z cl))(z c2, +-), the union of two open-ended intervals.

No distinction will be made here between open and closed intervals which

2shall be justified only by saying that T(z) = C only on a set of z's

of measure zero.

The above reference to infinite values of the covariate occur only

for completeness in consideration of the function T(z). As in any regression

type problem, we are not justified in extrapolating our results beyond the

range of the covariate actually covered in the experiment-. We are even more

restrictsd in this particular model, and should not place much weight on

covariate values beyond the range covered in each and every block. Hence,

our interest in T(-) is as an unattainable limit point rather than an

asymptote.

Thus far we have considered only the situation when all the eigenroots

are identical. When the roots are different the situation is much more

complex. Let r-3 so that (I J)M(I - - 3), the covariance matrix of Str r
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haj two roots Y and y such that Y • Then

2 2

T ((z) I ) + 2z (r j)(0 j) + 2 P 1

2 1lz +

Oc 1 )2 + 2z(K ') 2 )(9'jý 2 ) + z2 ( 2

Z9 22 + -

If T(z) is set equal to a critical value the resulting equation is

of 4th degree in z. That is, we could have four values z1, z2 23D and z4

such that T (z' 22) (z (3, z4) or T- [(zi, z2 ) ij (z 3, z4 )].

When there are three different eigenroots equating T(z) co a critical

value produces as many as 6 critical z's. Then the set 'T could have the

form (z, z 2) U (z 3 , z4 ) U (z5 , z6) orCT- ((z , z2)U(z3, z )U(z5, z
1 ' 161' z2 3 4 5 6

Likewise, when -_here are r-l different eigenroots, there can be as maniy as

t2,r-1) different critical z's.

Consider the following example.

E Let

2 1
o -1; r-r 3 ; t 5 ; y 1  i y 2 inl

(1. --1, 0 , - (1, 1, -2)
r22

Xoj -x , for all J, j'

That is, this is an exaxple of the special case of equal covariate blodc

eans.

_6__+_3_V 32~/+

6
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Let

2+ 2zr~)~~)+ (~~ 2 2 z2 -z+.2

T1(z.22 + .2 .2z 2 + .2

and let

Ij2 + 2z )2 z
2 2z(K' (a')2) + (j) z2 + 2z + 1

T2~ - 2 + 2z 2+ .2

Then

T(Z) T (Z) + T 2 (Z) 2 2

where A- 0when + zR =0 since 1.

The functions T 1 and T 2 each have the shape. of a T (Z) function with

ide~ntical roots as previously dliscussed; but their sum does not (see

.Figure .1). (The-illustrations with Roman numeral:3 appear in Appendix II.)

With asignfcac level of .10, i.e., a .10; Q -) (-.53, -. 31)

-(.61, 2.4). ýThe ~=.10 critical line for Xis shown on Figure I also.

The T Wz iind T 2(z~ cruves can be individually compared with that line.



CHAPTER IV

INTERPRE-TATION OF EXACT TEST RESULTS

Not only is it difficult to solve a problem for T in this special
T

case of equal covariate block means when the eigenroots of the covariance

matrix are different, it is also difficult to interpret the solution.

(Such a solution is even more difficult to find in the general case, as

will be seen later.)

In an attempt to interpret 2T , visualize r lines with interrepts K

and' slopes .• Unless a set of r straight lines have exactly the same

slege they will become "infinitely" far apart as I zj approaches -. So in

deciding how to answer the question "Are block effects different when

Z - Z0?" or "Are these straight lines different at Z = z0 ?", one must use

the magnitude of z0 as part of the judgment criteria. The larger I zj becomes,

the more difference between the lines it takes to be "surprising."

T(O) - tW'K will be recognized as a test statistic for "block mean

effects." Likewise T() '[R(I A'A)R]B is the usual test for block
- ~r -

regression effects. It is essentially this test to which Cox (I] refers.

In this problem T(.) is the value of the test statistic when IzI is so

large that the fixed effects, or intercept effects, K, are completely

"washed out." Of course, in practice, this point (Z - m) never occurs

because the upper and lower values of z at which T (z) is meaningful is

Ulnited by the range of the covariate within each block in the experiment.

If T(a) > a C 1 , i.e., C n ', then the r lines in question have

" "different" or "significantly different" slopes. The r lines are

20
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restricted in the sense that the sum of their slopes is 0 and the sum of

their intercepts is 0. For examples with 4 lines, see Figures d. and e.

Figure d. F4.gure e.

In Figure d, although the lines do not meet at a single point it

would not be surprising to find an interval about zk in which block

differences are uncertain. Whether or not that interval would include the

point z = 0 would depend on whether or not T(O) < a 2C r . T(O) will be

recogr.Ized as the usual test for the K effects. Figures d and e have been

drawn with the same < values so that if T(0) < a2C in Figure d, T(O)
j r-l

2is also less than a C in Figure e, and it would be logical to assume anS~r- 1 "

interval about 0 in which the lines would not be considered significantly

different.

2
Similarly if T(-) < a C then the r lines will have approximately

r- 1

the same slopes; end since the slopes are restricted to add to zero, the

lines will all hive slopes very close to zero. gee Figures f and g for

examples with 4 lines.

- Fg

SFigure f. Figure g.
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These cases are more difficult to evaluate subjectively because the

effect of i9 "washes out" as I zI increases.

If T(O) > a2Cr-l (perhaps Figure f) then there would probably be an

interval about 0 in which T(z) - a 2 Crl. However if T(-) < a2Cr and
T(0) < c2 Cr- (Figure g) it may be difficult to understand that there could

still be an interval (in Figure g in the region z < 0) in which the lines

could be considered significantly different. If this is so it is because

the lines spread apart faster than we would expect with regard to JzJ. Note

that the lines are farther apart at -6 than at +6 in Figure g.

Scale has intentionally been omitted from these figures to force

subjective thinking rather than mathematical manipulation. Certainly any

decisions must take scale into account. The purpose here is to suggest

that the logical sy-stems for evaluating whether a set of lines are appreciably

different at Z = z0 relative to i z01 give rise to single intervals of

difference (as in Figures f and g) and to complements of single intervals

of difference (as in Figures d and e).

Stated differently, let S1 be the set of z's for which a set of lines

is considered to be different by some criterion k. If r " %, z' Sk,

and z" V %, then we would want Z P V if z' < z < z". (Figures d and e.)

Ard if k , •, Z' ak , and z" c Sk' then we would want z E- k if

' < z < Z". (Figures f and g.)

This desire for 0k to be of the form (zI, z2 ) or 77 - (zl, z2) arises

from placing equal weight on each of the lines, or on each contrast of
the lines s'-ce they are restricted to add to 0. And, indeed, nT is of this

T

form when Ni Y" , for all i and i'.

However, T(z) does Y.,t place equal weight on each contrast of the

B 'u unless y for all i and it. Thus is net necessarily of the
y1- v, al i an i'PThu



form (z1, z2 ) or - (zI, z2 ). Through the matrix

(I - 1 J)R-I(I - I AA)-IR-I(I - 1 J) the statistiL places more weight
r r r

on the contrasts about which there is the most information. For clarifi-

cation, consider again Example 1 (page 18).

In Figure II (Appendix II), the lines vI ' 12 + 6 Z,

v 2  X + 3 z, andy = 2- z are plotted. The
2 1 G3 3 3

shaded area represents 7- - 0 T , the z values at which we cannot be certain

of bloc] differences testing with a .10 significance level. Because of

the I Sj = 0 and Kj = 0 restrictions, the 3 lines of rigure PJ. are redun-

dant.
Tn Fi~u-n *-, the t,•7o unrestricLed lles' w 'V ""

and w2 =_I'v 2 + _'1 2z - 1 + z are plotted. The region of-U - T is again

shaded.

In Figure !IT, where the two lines are perfertly parallel, the

multiplc NQT-zonc is particularly enigmatic as an answer to the question

"For what values cf z, considering IzI , can w1 and w2 be considered

estimates of zero?"

It is understandable that when 0 is in 9T points on either side of

0 might not be, due to the "washing out" of K_ with increasing jzi. But

that even larger values of Izj should indicate block differences is

difficult to accept.

The result is due, of course, to the difference in roots causin;

more emhasis on w as IzI increases.

The unequal weighting reflects the fact that we have more information

about -'- 1 and VU I than.r"- 2 and .8'u.2 " Certainly this ability to

concentrate on the qualities about which we have the most information can

be a desirable property for a testing statistic. But whet there is equal
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interest in each of the contrasts betwee.. effects this property may not be

so desirable.

In terns of power, T(z) would have higher .)ower against alternatives

which mike (K.'I + 2''1_1) large than against alternatives which make

2
+ z-'J 2 ) large, whereas equal power against both of these types of

alternative hypotheses would be desirable.

If we could control the covariate Z we would have equal information

about each of the contrats. When we don't have equal information, i.e.,

equal roots, we must consider whether we prefer a more exact answer to a

question we are only approximately asking or a more approximate answer t)

the exact question we are asking.

Recall that when we first sought a statistic to evaluate block diff-

erences (page 11) the fi:st choice was o.'e with expectation dependent on

(K_ + z•,_) '(i + Zo_), and T(z) with expectation dependent on
1 2 + I I+ (I -IJ)M(I - 1 J) 1  + z) is selected only because

(,cz8 (I+r r

the exact distribution of T(z) is tabled.

Let us look at a statistic with expectation dependent on

(K_ + ZO)'(i + z_).

-A



CHAPTER V

AN APPROXIMATE TEST OF THE HYPOTHESIS

IN THE SPECIAL CASE

As in Chapter III, a test is aought for the hypothesis which is

expressed parametrically as

Ho K: + Zo" = o

vs. Ha.: _ + Zoo- 9_

2 1 1 2 1
A + Zoý Y N2i (1 J) (. I + z2M) (I - - J)]SZo- N[( 0 r t 0 r

where

M R-1 1( AA)-1R-1

and

K + z = (H + z0Lly

where
1 1 ,

rxrt t- 1 r - t Jr]

and

r J)MRA(I'rt (It 0 i Jr])
L= (I-r

Let
A

s*(Zo) = (K + ZO_)'(i_ + ZOE) - X'(H + Z0L]'H[ + Z0 L]y

2 2
T(zO) is a central X under the null hypothesis. S*(z) is not a X 2

0

but it is "central" in the sense that W'[H +÷ 0 L] ' [H + z 0 L]iH (• ÷+0•) '( ZO)- 0

only when K + ZO§ - 0, where v - E(•)

25
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Although *(0b) is not recognizable as any single distribution, it
2

can be decomposed as a atm of independent X statistics. Let

i-i

(H + 0-L'(H zOL -S 0..
J-i

where

I..-0 1 0 i'
-1-i!-

Zi being a vector with rt elements. Note that the rank of H + ZoL is r.-1

jo only r-1 of the rt eigenroots are non-zero.
We know that the non-zero root* of (a + zL) '(H + z L) are identical

0 0

1to the non-zero roots of (H + z0 L)(H + z0 L)' . And (H + Z0 L)(H + zL)' 0

1 J 2 11

T(z 0 ). In the consideration of T(zxd we let (H + ZoL) (H + zOL)' I
1 2 ~. 2

(t + SOy•.)l••i . Hence the set of (+ + s is identical to the1 2set of Cyes and we shall we the notation t + z2r, since it shos the

6,-:,.endncy of the roots ra so

Therefore,

r-1 r-1

Ju l i i-i2.

That is. each of the r-1 tems is popoxtinal to a x statistic with

one degp of freedam and all are indspend ta,. XatL " 0 rmder No, the

hypothesis tha t 4 not - O. follos fron the "Osntrality" ot 8f(sO)•

that is# i'tI !1 &j3;, 0 o) .0, .
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2
Being a weighted sum of independent X statistics under Ho, the

distribution of S* (z0 ), under HO, can be approximn.ted by fitting the first
02

two moments to a multiple of a X statistic. Since

E(S*(z 0 )1 2 r l 1 2
( 0(a + z0Y,)

SS*(z )n(z 0) n(z
E 

n 

y0
0)J

2

where n(z ) is the number of degrees of freedom of the X statistic which

is being approximated. Then we wish

0S* 0 0Z)n(zo)
Va _ Cr2 1 z j 2n(zO)

or

4 n Yz2) [2 Var S*(z )0 2n(z 0

di +YiZo)J 0

Now

2 1 ri 2 124
Var S*(zO) = [ Var(Yiz 0 +t'.'£-i2-y = + + 2

i i

=2a [ Yi t 0 .Yi+

r--l 2 1 2
21]2

(Y (z 2 -)

i t
(Uz

L ~ 2 LI
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Hence

= 2 r1 y + - 212 r-1. ~ 2zo +. id Zo ý Yi +÷-
n(z 1 ___ ___0 r-n 2 1!2 r-1v 2 1 2 4 2r- -

i i i t2

z0 •. i +

= :r-l) ( r-4. r

L(zo r- + +. Zr -I i - 7]
or

n(z0) = r-1 ' 1 2 + 4 -2

where

and

r---- L 7i

Let

6 -2

and since there are r-l yi 's all greater than C

Si)2 2 2

-2 - <)2  (I) -2

r- - r-I (r-1)y

0 < 6 < (r-2)y2
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Hence,

n (z0 <_ r-i

and

n(z (Y)
0) 1 2 + (r-2) 1

n(z ) r-1 when z0 = 0 or when 6 = 0 . 6 = 0 corresponds to the case ot

equal eigenroots. Let

S*(zO0

0 o 2- 1Zoy +

Then

S(z n(ZO) 2
2 0 r-1 (zO)

and

S(zo) 0 T(z 0)

when yi = yi' Y for all i and i'

When the roots are equal both S(zO) and T(zO) give the same rt:ult.

When the roots are different, T(z ) becomes very cumbersome and can yield

results which are difficult to interpret. When the roots are different

S(z 0 ) compensates by varying the critical point, the amount of compensat..on

dependent on Y, and Y 2 which are, respectively the traces of the

matrices (I - J j)R- (I - - A'A) IR- (I - - J) and
r r r

(( - 1 JIR-I( _ AA)-IR-I(I )- 1)]

r r r

In order to discover the nature and extent of the S(z) statistic's

compensatiorn for different roots, it will le necessary to examine the

r-l 2f mtin on -ionnlzO) 'n(•0
00



CHAPTER VI

ANALYSIS OF APPROXIMATE TEST

The function S(z) has exactly the same shape characteristics as the

function T(z) when the roots are identical. That function is discussed

fully in Chapter III. However, the critical function for T(z) with

2identical roots is a straight line with ordh.=te a C where a gives

tle significance level of the test, whereas the critical function for S(z)

2 2 r-l
is the function a2K = - C To analyze this critical

n(z) nZ) Cn (z),c .T o nl hsciia

function let us consider the variation of C with ii The functional
nc

notation showing that n is dependent on z will not be used here. From

the previous chapter it should be clear that n is dependent not only on

z but on r, t, and the values of the covariate X used in the experiment.

At this point attention should be focused only on the variation of Cnect

with n regardless of how or why n might be varying. The notation "n(})"

will be resumed later.

Cn is defined by

C g(X )dx2 "1-

0

Th uve vru nauplte n ius Vfr endi1rn
The curves C Cn versus n aru plotted in Figure IV for seven different

significance levels. When a is small n C decreases with n • When m is
n nS1 1i~very large - Cn increases with n . When • - .25 the function - C i s vezy

nearly a straight line. (Actually it is concave downward with its maximU

1
at n = 2 .) Now if - C -could be well approximated by a constant, as is

n rt

30
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true fcr c - .25 and for other significance levels in certain ranges of n,

findinq critical poirts for S(z) would be very easy. Note that the ,ritical
2 2 r-l 2C1

function for s(z) becomes 2 K = 2 - C = 2 C because if -1 C is
n n n-i r-1 n n

constant for all n we may use n = (r-i) and it is equal t- r- - C:e.-I

Hence if the desired significance level for ' a test is .25, as might

be the case if the more serious testing error is to fail to recognize that

the blocks are different, that is, Type I errors are tolerated to decrease

the probability of Type II errors, then S(z) can be evaiua Ad against the

straight. line c 2 Vere S(z 0 ) > a 2Cr 1  the point z0 can be considered

to belong to the set 0 , and where S(z 0) < Cr-1 , the point z0 can be

considered to belong to the complementary set U - QS

Unfortunately the function -1 C is not so well approximated by a
n n

constnt for small values of a, and when n is small the variation can be

1
ccnsiderable. To evaluate the amount of error introduced by using C

ra'ther than the correct I C Note thatn n

2, 1 2 -1) 2 Fl C1
2r-l)n- C = c (r-lr--- C + o2(r-l)1 C -C I

n n r-1l i-1I n r-l r-1j

For small values of a the quantity in brackets is always positive

since n r-l, and it increases as n decreases. To find any bound on this

error it is neces;ary to find out how small n can become.

From a theoretical standpoint it should be pointed out that a values

of .50 or A.Y viin ake the quantity in b.-ackets negative, but the curves

ar ,•t& 1 omLni and the maximum error would occur wtion n i. at its

Sn~.imum v.l',,. rePi a !practical point of view, it is difficult to imagine

i:, ± itti i ,N"Ltn -t l.nh a large ýt ihere one would not b1) •-atisfied to

r - I!

a ii r-
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In Chapter V it was shown that n(z) is bounded below by 1 . This

lower bound is not dependent upon the r, t, and x.. 's of the experiment.

When .hose factors are incorporated, a much higher lo-er-bound for .(z)

can be obtained. Ignoring the practical limitation which the x.. 's place

on z, a lower limit for n can bE achieved by letting z approach infinity

since n(z) is a monotonic decreasing function of zI . Note that

Limit Limit + 2- 12 1 -2 -2zj ___z= ( ._i)_
n(z) = (r-1) j r-1 -17-! ~~( Y + -l•= z; ) + z% Y +

That is

n () )

Y: 2
1

where

r-1 - 111Y r- i ty t(I J) ! R- (I A A) 1'-R- I(I - J!)
i r r r

and

r-1 2= -' 1 -l-3( 1 2
Yi tr[(I -- J)R (I -- A'A)-R-(I -- J)]2

r r

Hence,

1 < n(-) < n(z ) < n(z) < r-1
p

where z is a practical upper bound on I zI imposed by the values of x

used in the experiment.

Referring again to Figure IV, with small a• tha function Cn(z) is a

monotonic decreasing function of n(z). So since niz) i. a monotonic

decreasing function of Izi, ';he critical function for S(z) will be a

monotonic increasing function cf IzI
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The S(z) curve will be shaped as in the equal eigenroot case of T(z),

however, the critical curve for S(z) which shall be called a 2K is notn (z)
22 issmercadwe

a straig;ht line, as is o C2 1 . The curve a K is symmetric and when

a is not large, it is concave upward being asymptotic to the horizontal

line represented by a2Cn() See Figure i.

S • .... . -- 2c

a:4S '~n W(cv) (-

Fi gUre i.

It should be pointed out that the critical curve is always •.,ymmetric,

bounded and asymptotic to the line corresponding to n(•'), but its shaper

I need not be that of Figure i. The only exception to its being concave

upward (small a) or concave downward (very large a) is the case of ci = .25.

In that case, the curve will be bounded above by Cb where b is the maximum

of 2 and n(c•). En other words, when using a = .25 if n(•) <2 find an

upper bound for the critical function with 2 rather than n(•).-

2Since the critical ci.rye based on a X statistic is virtually a

2
straight line when a =.25, the point may seem trivial. However, when

is not known and use is ',ade of a P-statistic, the shapes show a little

more variation as the degrees of freedom for error change. The x• statistic

discussed here is equivalent to the F-statistic situation with infinite

degrees of freedom for error. +•bviousI70 unh,:•s th,, d+,•r,'.vS of freedom

for error are ve.ry smal.1, tiw situation wil he s, ,imi far to that illustrated

---

r-
zLI



in fli.:e ie '74 titatlon ;s 3isc'issee. ;r, (l.aDter VITf and -l. only bro:1?i'

up at this t. r.e tc warn the re-ader tna- W cri .caJ, function for i., ,z

statistic, t~,,h bonclldeda, rmav nof. always have the .ame shape.

Colvinq for the points z arnd i Ln Piqure i, the intersections of
ab

S (z,) and 1  can be doe ira:,velv nce the inter sections of S,(z)

With ariy 0.r z Li rz 7,T2 e7. ..... thr,. Liqt be more h-an

two interso~i.nci d'lli Lt; ., ,i , .. i.

Consider . :, ,.,,, c. ::u'bern . J~ , , x, .. , I. pr]evlo.s y

discussed in Chal ptc! I n I I t ,c IV.

Examri. ,IYcer V.-

L2r 7Iy- 3

(< + 7 . • z '• ,v z(•'2 Y 2z + z + 1.25

Let

, Z - z - z + .25
i(z 2- 1. 2

,' I" -- .6z + .2

, 2 - -2-2 - - + 2z + 1
2 72- 1. 2

z2- .6z + .2

Sio tl.%lt-

(" + z8)'2.1 + zo) 2
- ~ ~ 2 +- z 2: + 1.25

(z 2 -6z +) .2 ÷.1t4.

r..i (z- (.6 2" + ,,, •t• .2 ) 2 4

2- 4, 2 2~+ .2)'? + .16
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r-i

n (.6) 2 .36
r-1 (.6)2 + .16 .52 .693

n(±1) .64 .8
r-1 .64 + .16

n( .5) .1215 925
r-i .1215 + .01

C =C c ~ 3.4 K r-l C4.Cn(-) , 2(.693) = C1.386 n(•) n(•) n(-)

K r-1 . 4.75

n(±_1) 2(.8) 1.6 n(±l) n(±1) - n(±1)

CCC 5  43K=r-i C 4.65
Cn(±.5) = C2(.925) = Cl.85 t 4.3 Kn(±.5) n(_.5) Cn(±.5)

C C =4.60 K =C = 4.60n(O) 2 n(O) r-1

The component functions S1 (z) and S2 (z) are graphed along with S(z)

in Figure V only to allow comparison with T1 (z) and T (Z). It is never

necessary to break S(z) into r-I parts.

Although Kn(z), the critical function for S(z), is not a horizontal

line through the point (0, Cr.1 ), the error incurred in such an assumption

is small in this example. Let

S(z') a 2K2n(0) m 4.6 - 2z' 2 + z' + 1.25
4 .6z 2 + .2

Z 1 ± 1.59, -. 271.52

tatl



2 2z'" + z" + 1.25S(" : K• 4.9 -
.6z."2 + .2

=Z 18 = 1.29, -. 221.88

With only two calculations we determine that

(-.22, 1.29) C Pc (-.27, 1.59)

where the symbol 2 is used to represent the set of z's such that

S(z) > 2 Whether or not more precision is justifiable considering
n (z)

the approximate nature of the distribution of S(z) may be subject to debate.

J.f more precision is desired in the uppex end point of the interval, one

mi=ht so)lir for K and S(1.4).
n (1.4) a

n"1.4) = 1.89- M- = . 753
r-1 1.89 + .615

C 3.67
n(..4) 1.5 06  Kn(l. 4 ) = -=4.88

2(l.96) + 1.4 + 1. 25Sn(l.4) = 6K 4.88
1.176 + .2 n(l.4)

and

S(1.29) > K( 1 2 9)

Hence,

(-.22. 1.29) C n C (-.27, 1.4)S.

In a similar manner any desired degree of precision can be attained

with regard to either end point of the interval of the z's which constitutes
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Example 
la.

" 2 4 - 3
Assume now that y 1 - and y 2 n A , maintaining the Y- of

Example 1, but having a ratio of 1:2 rather than the more extreme 1:5

ratio of Example 1.

Then letting

S(z) = 2Cy C C 1

yield. the same interval (-.27, 1.59). But

10 9 1
25 25 25'

so that

n(-) .36 2 4.226
- .40 " .9, C1. - 4.226, a K-- = 4.7r-1 .40 18 n(-) "

Setting

S(z') = 4.7 Z'= -. 256, 1.47 .

And if z2 < 1 from theoretical or practical considerations, we

would look, not to n(-) for an inner limit, but to n(±l).

a2K = 4.66 =S(z")
n(±l)

VI • + 1.0125
Z= 1.592 -. 262, 1.52

And due to z2< 1, we would state only that z values greater than

-. 26 or -. 27 result in significant block differences. Greater precision

can be achieved, of course, from iteration.
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Example k. Figure VI.

2 1 1 3
a = 1, r = 5 , t - 4, = , = 2 y 3  ' -

- 5 30 25
78 , 64 64= .078

^ 3
=6, ~=1

Then if a = .25,

S(Z') 6z' 2 - 3z' + 1 2.3S~' = 5 1 = a Cr1,2 = 5.3855 e2+1 r-1,.25
4

z' --. 10, +1.24

_ 6z'2 _ 3z" + 1 C 2 Kn() 1 4.534
S(z") = 5z, 2 + 1 2 = .833C3.33 - .833

8 4

z" = -. 11, +1.26

U -(-.10, +1.24) C U -(-.11, +1.26)

And if a = .05,

S 6z' 2 - 3z' + 1 2-9
S W') = a 9.488

.= 5, 2 +1 -,.05
8 4

z' - (-.50, 47.5)

S(z") = (-10.1, -. 53)

(-10.1, -. 53) COS CTT -(-.50, 47.5)

Then if -z < z < z where z is a theoretical or practical limitp p p

an z and -10.1< -z < z < 47.5
p p

(-z, -. 53) C (z O, -.50) .
s- p
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It has been assumed, thus far, that Kn(z) and S(z) intersect at only

two _.o: •':. Tt sioul].d - clear that this will be the case unless the two

:., closely_ para!.ej. each other where K n(z) has the most slope. The

fol1J.;inq counter eŽxample is given.

Exal___ 3. -'icure 11T.

- 1 5 2
r= 7,t = 3,y = 1, = .05,

•I 1 0O, K'K = 4, K'$ = 0,

2!Oz2 + 4
=IZ + ,-
2 3

s0) ,. .2 K = 12.6
n(0)

S'•' .•. 4..- .. 2' " Y = 13.5~n(-1.5)

".(: ~--- () =20.2

This r a vali d mathematical counter example to a contention that

: be z. single interval form, however, two practical points should

be mide. First, the . value for this example is very, very high. This

mea) t;hat the roots are very unequal, possibly 5 roots equal to .0925 and

Sone rco, , to '..54 . with this much difference in the roots it is

cdoub f -u1 that the nT.-roximation of the distribution is very good. And,

seco d>. -t'e ri, error would be introduced in this problem by reporting

any "i3!•• oave r.

. • . ,. of covariate Block Means.

- ... .,'i all blocks, j',j = 1, 2, s , r, to simplify

"o. ','e ihave~ •outnd two tests, or criteria, for generating sets,



40

Sk' of z values for which blocks are significantly different. By adding

x1j to all z values we form the sets of all x values for which blocks are

significantly different. That is, if .67 e QT , then (.67 + x.) C rT

And if .67 E QS then (.67 + x. .) c rS .

The sets rT and QT are found using the statistic T(z), a sum of r-l

fractions whose numerators would add neatly but whose denominators contain
2 2

the number y, which may differ from term to term; and T(z) ^ a Xr

The sets rS and Qs are found with the statistic S(z) which averages

the yi's, substitutes y for each yi and adds the terms. S(z) is approximately

2 r-1 2
distributed as a n(z-- Xn(z) , where n(z) is a correction factor based on

I zj, the differences between roots, and t.

Let us speak now of a third statistic, R(z), which equals S(z), but

R(z) , a X2r2 * Naturally this approximation is rougher than the one forRz r-l "
S(z) since we know that the first two moments do not exactly fit, unless

n(z) = r-l . Then the sets 9R and r R will be generated by R(z). The use

of the R(z) approximation derives as a simplification of T(z) by the

"unconscious" mathematical manipulation of averaging denominators to add

numerators. Likewise R(z) derives as a simplification of S(z) by letting

n(z) - r-l . How good an approximation rR will be of FT when the roots

of (I - J)R -(I - 1 A'A)- R -(I - 1 J) differ cannot be determined with-
r r r

out a great deal of calculation. But limits can be placed on the approxi-

mation of r R to r by solving z' when S(W') - 2 K nmwhere n is the valuenmm

of n(z) which results in the maximum (or possibly minimum) value of K over
n

the range of z. (In general, the limit on the approximation is found by

letting S(z') - a 2Kn () (a

The sets rT, rS, and rR are obtainable from 1T' Y and nR onlywhen

x j - x, for all blocks. Finding rT, rS, and rR in the general case

requires some aditional calculation.



CHAPTER VII

THE GENERAL CASE

1. Development of a Parametric Statement of the Null Hypothesis

As in the special case, the experimental model can be written as

(x - X) (x.. - x.)
Yij = + Ai + Kj + 8jr. + r .

1) 1 J J 1 ~* T~i - i ) j
2 )*(Xij - X.9(i9 -

1 , 2, "",t; j 1 , 2, ' r; rj II j - x I 8 = 0 1K. = 0
"3ii j I

however, the ic. used here may appear to be different from the K. of
3

Chapter II in terms of the parameters of Chapter I. That is, here I
K =V + x. + (x. whereas in the special case K. = v. + *(x.

Sj 3

However, since the special case uses the additional inestimable equation

•j = 0 to solve the normal equations, it should be evident that thej

previous K. is, indeed, a "special case" of the K. defined here.

When X = x0 the variation in E(y) from block to block is contained

in the expression K. + (x0 - x)0 + (x - X j)P . From this expression
1 3 j j 0 j

we can eliminate x oP, since it is the same in all blocks, and for mathematical

convenience we add x..I Then the expression incorporating all block

differences becomes

K + (x -X ) -(x. -x..)
j 0 *j J

41
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Let

Pj(xO) = (x0 - X.j)Bj - (Xoj - x.

The notation P (x O) is intended to imply that P is a function of xO, not

a product.
r

By taking the inestimable condition N (x0 - x j)Oj - 0 to distinguish

block regression effects from the mean regression effect, we see that
r

Pj(xO) = 0 . It ahould again be evident that the special case condition
0 Oj . 0 is included in the condition Pj(x ) - o when x = x.j, for all

J and J1

2As before Kj -- y.j - y.. and K_ N[K, ýt(I - .1J)1.r Just as in the

special case, we find that

AA
II

+ R (I A'A) A 1 -(t 0 J

Thend

P(xO) -(I - J)[xOI -diag(x. j)(B+l1) -xOI -diag(x.j)IS_- [(diag x )-x..Ill

and

S-(x) (I J)xo- diag(x •16' + 1;)

frca which we see that

(+P(X 0 ) a 2 (1_ JU + 1-dia-(x. .)N1)

I(Rru
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Let

W = (x0I - D)M(x0I - D)

or

W X0M - x0[DM + ML1 + DMD
xO 0 0

where D = diag(x .). (Note that W reduces to (x0 - x.)2 M in the special

case.) Then

S(x0) " k+ ) 2 1 1

. .+ u N [K + P (x0) , a(I - -J) (-1I + W0(I -
-- ' r t 0 r

The hypothesis of no block diffe nce when X = x0 becomes

Ho: K + P(x 0) =0

vs. Ha. K + P(x0  0

2. An Exact Test

2.

Again, an exact X2 statistic can be found to test this hypothesis.

1 1~ + 1 1 1 -l 2

-K= [ + P(x )]'[-I + (I - J)W (i - + P(x
- 0 t r x0  r - 0- r -l

where

+ P(x )]'[--I + (I -- JW (I -- J)-K + P(x2 - - t r x r - 0-

and k -0 under the hypothesis H0.

Unfortunately when (I - I J) (W (T J) is expanded in eigenvectorsr XO r

the vector's are not independent of x0 as in the special case. To emphasize

this point the subscript x will be used for the roots and vectors. The

functionzl notation v. (x) becomes cumbersome as dos,i the retention of the

notation x0 which has been used to emphasize the fact that the test is
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made at a specific point and then the inquizies are made as to which X

values would cause the test statistic to be higher than some critical

function. Hopefully this point has been made well enough to allow the

terminology vxi, and yxi to adequately conmmunicate the idea that these

roots and vectors are dependent on a specific value of X at which the test

is to be made. Since

r-l

r x r = xi-xi-xi

then

r-l
1 1 + ;*X

-!-T7 x) =- l r +P(x)J,^ [ +P~)
, +______ I ,PIx)

CT a2 i=l Ixi I

It should be apparent that it is possible for y = Y for all i and i'

and for all x values only in the special case previously considered.

Hence, solving for rT, the set of x's for which Vx) > CyCr

becomes a trial and error task which generally involves the inversion of

the matrix

1 J+ [Il 2M1
I+I - [ [IM - x(DM + MD) + DMD](I - 1j)t r r

at each trial.

Recall that we cannot assume that r is of the interval or interval

complement form so that finding two end points of intervals in rT does not

mean we have found all of rT .

Obviously the Trstatistic has the theoretical disadvantages (resulting

from the uneven weighting of contrasts) that the T statistic was found to

have. But in addition, the ditermiration of rT will be tedious and expensive.

If there was reason to seek a second test in tJ.e special case, there is even

more reason in the gemral came.
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Again an approximate tcst foi] thý:,

Ho: K + P(x N 0

VS. Ha: + P(X0 ) 0

can be formulated, which depends on [K + P(x0)]'I[ + P(x0) .

Let

S;(x) N 0 • + _(x 0 ]'[K + P (Xo0 ] ) v' fH + L(x 0 )]'(I + Wx )1Y

where

H = -• 1•(Ir -- Jr
t r r

and

LNxO) = (I - - J) (x0i - D)MRA (I. -, ! T j J ])

2(x 0 ) is a central X under the null hypothesis. S*(x0) is not a

x but it is "central" in the sense that j_'[H + L(X0)]'[H + L(X0 )I- =

[IC + _P(XO)]'[ + P(x0)] = 0 only when K + P x0) = 0 and again P = E(y).

Like S*(z) the statistic S.(x) can be decomposed as a sum of indepen-

dent X• statistics. Let

r-J

(H + L(xo)]' [H + T,(xo)I - I &xi. 1
-xixi-xi

where

-xixii - 1 - V

=0 i9i'
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|v
As in the special case we note that the r-1 non-zero & 's are iden-

tical to tho non-zero (I + yP•)', thus Sxi

1 1 r-lCH +L(Xo)]I[H+L(xo)]'' (- J) + (I-1 J (-1 J)- (Y +V ViV~i,
0 tr r xi t-xi-xi

W - (x I - D)M(x I - D)
0 0

Hence,

SqI(x) IN~ Y ( +

and

1 2
C-2 Z •xi&ýiy XX

where X = 0 under the null hypothesis.

As before the distribution of q(x) under the null hypothesis can
2

be approximated as a factor times a X with m degrees of freedom. Now

r-l
E[(S.Y*(W)I - ai (Y x

im 1

and

var[(s(x)] - 2a2 Y + 1 )2

so

a 21 (Y +

and we wish to chooae m(x) such that

Var[(X) (A)1 I - 2m(x)
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or

2 W 21 + 12
4[• i ]2 - 2m(x)

a 4[ xi + --]

Thus

Fr- 1 +J1 2

I x •) 1-- r-2 1 2

M'rx) - ~ [ xi r- yx+t - x+t
r-1 2 - 2 -2 1| 2

(y + 2 ~(y x+ V+ (y y)xyx+ )+sxi

where

1r-1

Sr-1

r-1

YX r-1 Yxi

x x x

-20 < 6 < (r-2)Yx

hence

1 < re(x) < r-1

Let

X)a S4(X)

x t

then

r-1 2,m (x)' mz (x
rl t

fecal ling that

Kf



48
* * A

(K + P(x)J'[K + P(x)]

(1) aI 1

Yx t

qx) - TX) only for those x's, if any, such that y xi = x, for

all and £' . Now

-1 1
(r-l)yx- trace of(I -rJ)W (I -- J) > 0

r x r

- tr(I - J) [x2M _ x(MD + DM) + DMD] (I - _ J)r r

2 12x tr( r 1J) M 2xtr(I - J)MD + tr(I J)DMDr r r

Let

2 2
Yx 2 x+AI 1 A0

whtere

" -r-; tr(I - r J)M
2 1-

A -2--- tr(I-J) MD
1 r-.i r

0 -- tr(I - J)DMD

and

* 1
1(x) - (I - - J) (xI - D)Gyr

where

r 1r

GuR (I(- 1

ILI= (I -- !JG
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and

A1
•0 =(I - i J) DGY

thus

^ A

P(x) =_1ix+_10

Then

2 A A A A

(12 + 2 I + K) + (_1 + 0'_ .O + K)
(2) S4x) -1x1 2 1

2+ xx + (X0 + V

When 4Lx) is expressed in the first form (1), it is difficult to see

how values of x affect the value of S4x). However, in the second form (2),

it is apparent that Nx) is again a ratio of two quadratic functions in x.

Again Nx) is continuous and has at most two extreme points, although

those two points can no longer be expected to lie on either side of 0 as

with S(z).

Looking at 2s1'x) it can be seen that Sx) takes its "shape" from the
ax

sign of Q - 1-1 2- - + 1K) rather than simply from - K'8 as in the

special case. If Q > 0, then 2s.X) > 0 for very large values of lxi whichax

implies that S(x) has a maximum to the left of its minimum.

x) 1 ^x,

X) 2

Likewise, if Q < 0,

2 " "
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Andif Q=0, and-Xl2f1 > X +1 + 0) + s4flA-2-1 +1-0 - -0- V

0 t

x)

c. A

Similarly, if Q = 0 and N(o) < SO(O), SOx) is again syvmietric about xc,

but concave downward. It will be noted that

y'G'(I - 1 J)Gy
Slir li r

S4-O) - q ~ x) = Sz) = S (ow) = A2 0

again the test for regression effects to which Cox [11 refers.

However, SP0) is not the test statistic for fixed effects. If

X.j = Xj, for all j and j', then Sx4 ) would be equal to S(O). Thus

qx) is shaped much as S(x), and can be easily solved for its two inter-

sections (if any) with any horizontal line. The general critical function
2 r-i 22 m(x-- X2(x) is not. however, shaped as the critical function for the

special case. In the special case, n(z) decreased monotonically with IzI

so that when -1 C was monotonic with n, the critical function was monotonic
n n

with I zi • Here the functions-C are the same, but rn(x) is not unimodal.

Recall that

m W, - (r-l) ,

22

w are ::: u xi roos + 1) 2 + 1 o2 r

where y andth sum. of roots and sum of squares of roots of

K-~ ~ X _________



51

the n'atrix (I - 1 j)[x2M _ x(MD + DM) + DMD)(I - 1 J). These roots will
r r

vary with X and certain X values will produce more unbalanced roots than

others. In order to evaluate the variation of m(x) with X it will be

necessary to rewrite m(x) in a form which incorporates the functional

dependence of the roots on X. This can be done by noting that the sum of

the roots is the trace of the matrix and the sum of the squares of the

roots is the trace of Lt'e square of the mitrix.

r-I xx 2  
1 x+A 0

where the X01, xI, and A2 are defined for establishing the second form (2)

of Sx). Now

1 2 = =1 trI 1 J)xI 1J)
r-l xi x ri -r-r x

1 2

W = x2M - x(MD + DM) + DMD
x

tx= r--- - J) [x2M x (MD +DM) + DMD] (I _.Ir J) [x2M-x(MD+ DM)+ DMD]

Let

(I - J) = T
r

Yx = r-I tr TMTM-4x tr TMTMD+ 2x (tr TMTDMD+ tr TMDT(MD+ DM)]

- 4x tr TMDTDMD + tr TDM]DTt4D} •

Thus

A , 4 + x3 3 + x2 2 + 1 + 0

_ __ __
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where

1 1r(~ 1 4 tr(-1 1
1= tr-' I-- J)M(I--J)MI 4 - tr-- I-- J)M(I--!J)MD]ý4 r1 lr r 3 r-1 r r

2 {t[(-1 1 1 1
2  {tr- (I A J)M(I J)DD] + tr[ (I- J)MD(I- - J) (MD+ DM) 1)

2 tr [(I- 1 1 D1 r1 1
4 1r-- IA J)MD(I- 1 J)DMD] t0 = r- (I --I J)DMD(I - J)DMD]

rrrr-1 r r

Then

21 2 (-2) 4 3

m(x)r-x+X+1A0+ "] where g(x) 4. A (23)x-Lp3 _2X 1 X2 )x
m2  1 ] 2 +g(x) + 2- 2[,X2+X x+XO,+:t]2 2_XX +(2,2 AO_X,21 )x 2+0 (1 +X 1X0 )X+* 0 O+X 0)

We note that m(x) is the ratio of two expressions which are 4th degree in X.

As such it can have four distinct critical, or extreme, points. It is

bounded above by r-1 but it is difficult to establish a useful lower

bound. Since r- 2 (- Yxi for any x, we knw that m(x) > 1 . It
i "i

was shown in Chapter VI that a - .25, the critical function is insensitive

to changes in m(x) and the lower bound m(x) - 1 may be adequate to bound
m(x) and hence bound r-l C and hence bound rS, the set of x's fox "hich

m (x) M(x)

blocks are significantly different. But when a is small and there are a

large nuvber of blocks, the m(x) - 1 bound may well be too low to be of

value. The m(x) - 1 result is equivalent to the extreme case of all roots

equal to 0 except one. That any value of X could cause this sort of die-

tortion oi the matrix W becomes more and more unlikely as r, tse size of
x

the matrix, becomas larger.
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Although it is not in general a lower bound, it can be pointed out

that m(co) = n(co). That is
2

lrn A 2
m(co) - r-I -

where

2 tr(I -- J)M2 r- r

and

4 1 1 204 • r[(l--•J)M]2

This should not be surprising since as x becomes increasingly large any

x subtracted from it would become immaterial.

Hence, m(x) is asymptotic to m(-) and the corresponding critical

function is bounded by o2 Cr 1 and asymptotic to a2 C The fu1ction

m(x) can have a minimum lower than m(-), though it will be greater than 1.

A great deal of effort can be expended finding the intersection of the 4x)

function and the critical function. Consider an example.

Example 4.

01
r = 3, t 6, o - 1, a - .05, m 60,241o051

x1-Ox 1 1 l o
x. 1 0 OX.- 2, 0.- diag(x.) 0 21 0

20o0

Then

tr(I- J)M t r +1 2 -( -) . 2 08

~~ 24 + (1 24
(1 0 -1) (1)1 -2 1)
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(I -.2 1) - -tr - -0 -. 02081 3~t(-JM 48 48o2 1)2 (o +1) (o -2 -1)

0- 1 1)1 1 .1o0 - tr(I - J)DMD - 1 tr (I - I J) 0 6 0 -. L .0382
2 96 3 (30 5 28

4522 A .00174*4 " 045 4 " k2 "

*3 "-.0174 •'3 2A 21 X2 z -0087

.0182XX X2 .0163

2
-0 .00163 ýO- 2A0 - 00017

- -2 4 3 2 007x+.016 x -Yx 00174x - "00864x + .0163x - .00073x + .00017

MW ) . .... 2(.208x2 - 0208x + .2049)2

(.208x2 .0208x + .209) 2 + .00174x _. 00864x3 + .0163x -2 00073x +.00017

The function m(x) is plotted in Figure VIII (Appendix). We see that

m(O) is very cloes! to r-l, that is, 2 . This is because the x.j of the

example sum tr 0 . The curve is asymptotic to 1.92 . However, the minimum

value of the curve occurts between -1 and -2 . This means that X values

between -1 and -2 cause the roots of the W matrix to be relativelyK

further apart than any other X values. Such a plot may be disconcerting

but its effect on the problem at hand, i.e., the finding of r can be

very small.

In Figure VIII, above the mi(x) curve, are the I C curves for

a- .05 and a - .10 . Since a2 is taken equal to 1 in this example, these

are the critical curves for evaluating !Vx) at the .05 and .10 levels,
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respecti.vely. When a = .10 the total range of the critical function is

.012 units, and clearly it would be much less for a = .25 . When a = .05,

the range is .24 units. Even if a = .05, this slightly undulating critical

function may not cause appreciable trouble.

Consider the following values for the estimates of the parameters

which comprise S(x). Let

GY_ = MRAd(I rt- it 0 L J )v = ( )

(I - -1 J) Gy =-(I J) DGy

A j1/2~
= I1/2 0 .... i

( -1 -0 2 1- 2 - 2

then

x= +x[2n 1(n + K) + (n + (

4xx 22+ Xl + X +

and

2x - 2x + 2

SY(x) 2

.208x - .0208x + .2049

in Example 4 (see Figure IX).

As a first step in finding rs we find F R by equating SOx) to a22 Cr.

for a - .05

S-( X') -5.992 - 2x' 2 
- 2x' + .667

'V .203x' 2 
- .0280x' + .2049

(Recall that r-l - 2 .)

x' - 2.76, -. 27
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Noting that &q) < 5.99 and .27 < 0 < 2.76 we state that

r = U -(-.27, 2.76)
R

r is an upper bound on r in the sense that I' C I ' Note ..dt
R S S

use of rR means that the true a-level for the test is more than the stated
R

.05 level.

A second step toward finding PS would be to solve S•tx") (r-!,r

Again, a. .05

1x) 22x' 2 - 2x" + .667Sx)== 7.68
4 =.208x"

2 
- .0208x" + .2049

x"= 5.05, -. 45

r Lower Round = U -(-.45, 3.05)

The fact that this lower bound is not close to I'R means that it will
R

be necessary to find m(-.27) and m(2.76). !ýnowing that the interval found

by using m(x) = 1 is a very poor limiting value, we can expect the true

set, FS, to be close to rR .

Finding the values of m(-.27) and m(2.76) requires the determination of

the•0' "10i'2' Y 3, and *4 values. Had they not previously been determined

in order to plot Figure VIII, it would be necessary to find them at this

time.

m(-.27) - 1.94

m('.76) - 1.97

2.22 2x 2X +2
Sx) -" 9 4 "C. 9 4 -6.00 - .208x .0208x 4 .2049

x - (-.27, 2.71ý



57

T'his result would ne sufficient, in most cases, for us to statr

th:ft F - --. 27, 2. 76)S

Figure IX shows the critical curve for Example 4 for a values of

.25, .13, .05, .025, and .01 . These are presented in order to show the

relatively small amount o.f difference in the a-level which would result

from using FR as an approximation to F s However, this is admittedly

only one exampl' and a great deal of work can be done on the matter of

finding a realistic lower limit for the critical fuinction. It must be

remenbered that if the eigenroots of the M matrix are all near zero except

for one, the critical function could rise very nearly to 2(r-l)C 1

Hence, it would be very desirable to find a quick and easy lower limit Zor

the critical function in terms of the matrix M and the diagonal matrix D.

At this point it can be said only that the use of the critical
2 2 r-l

function a C2 1 seems to give very good approximations to a m- 2 x) C
r-l mOO) mOO)

unless the M matrix has only one root appreciably different from zero.



CHAPTER VIII

UNKNOWJN VARC ANCE

When the e-ror variance a must be -rti.mated from the experimental

data, an F-statistic can, De formed with T(x) and MOE, or ar. approximat,

F-statistic can be formed with S x) and H1SE.

Both T~x) and S x) are independent of MSE, sinceý hIe matrix of the

quadratic form of SSE is orthogonal to the r, 0, and • functions of the

Yij's from which T (x) and S(x) are fcrmed.

Vx), being a true Xr-l , can be used to find a true F-statistic,

namely

F (x) = x)/r-i FTMSE Fr-i, •t-2r-t+l, 1

where

SK P() T + -I J)W (I - j) + P(x)
2 - - t r x r -

Everything that was said about TIx) can be reiterated for FT (x)

Unless conditions for the special case hold, the calculation of each point

of FT (x) will require inversion of an r I r matrix. The power of FT (x)

will be greater against some spec.z.c alternate hypotheses than others, as

determined by the eigenvectors and eigenroots of the matrix o: the quadratic

form.

At the cost of knowing the exact distribution of the stati:tier these

faults can be ,:orrected by formulating, with .Y , an ,'-ximate central
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F-statistic under the null hypothesis, namely

S4 x) m (x)
F"x W- A, F

FM-1M;E m(x) ,q• MSE

whe re

q = rt -2r- t + 1

As in the consideration of S4x), the two values of x (if any) at

which F sx) equals any critical value of an F-statistic can readily be

found. However, the critical fui:ction for evaluating F tx) is not aS.

horizontal line although it may be nearly so in most cases. To consider

the variation of the critical function with x, it i.G necessary to consider

the variation of the critical points of a P-statistic with \l, the nu,-,era-

tor degrees cZ freedom; and the variation of the numerator degrees of

freedom mI r(x) with x

Define f by f F = A . Note that C = f We have
I, ,q ifq n n,W

considered the variatiot. of f V, with v in Chapte2r VI. It was found

that f i,• was a monotonic decreasing iunction function of \ for small L,

and a monotonic increasing function of \'i for u larger than .25 . When

a = .25 the largest value of f is found at \Vi = 2 ,

In Figures X, XI and XII, values of f are plotted againstvl'q V
1

It will be noted that the slopes of these •Lurves are "ruito constant," the

variation belng in the same direction as before whn ' is not small.

When v2 is 1 or 4, the critical function actual ly inc',j:,.s with V 1 . The

constant slopes of these curv,- indicated that linear -t,,rpolation should

oe done with rather than with

Having established that the critical Functinti fl? 1 (x) will be

generally monotonic with ue x), the only exceptiroz 1•ri, .. with a

__ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _I
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larce number of degrees of freedom fox: error, attention is again fcvused

on the variation of m(x) with x . In the special case of equal covariate

block means, re(x) is monotonic with Ix - X. , so that limits can be.j'

placed on the critical ftuzction by m(-) and r-l . However, the same prob-

lem of finding a lower limit for rm(x) in the general case that w:s dis-

cussed in Chapter VII cccurs here. When r. is small, the critical function

f will reflect the shape of the m(x) curve. The closeness of T to
m(x) ,q w

PR can be established only by solving, iteratLively, for the inter.ictions

of F s() and f r(x),q Consider ani example.

Example 4. (Continued from Chapter VII).

2
r = 3, t = 6, 2 unknown, MSE = .60, a = .05

2x -2x + .667
2

.208x - .0208x + .2049

1Fs(X) = 2(.6) Fr .(x) ,rt-2r-t+l under H0

fr-l,rt--2r-t+l = f2,7 " 4.74

To find rR solve S(x) = 1.2(4.74) 5.69 for x; this yields

x =-.24, 2.57 . Hence, f R U -(-.24, 2.57).R

Next find m(-.24) and m(2.57)

m',-.24) - 2f.208(-.24) 2 - .0208(-.24) + .204912
2

[.208(-.24) - .0208(-.24) * 20491] +
"-.24

4 3]

.00174(-.24)4 .00864(-.24) + .0163(-.24) - .00C73x + .00017
-. 24
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2(.2219)2
m(-24) 21.94

(.2219) + .001.4

fi.94,7 = 4.76

L S.(x) = 1.2(4.76) solving, : -. 24

2

m(2.57) = 2(1.524) = 2(2.32) 972 2.36
(1.524) + .0353

f1.97,7 = 4.75

SPx) = 1.2(4.75 = 5.70 solving, x = 2.55

Then r - U -(-.24, 2,56)S



CHAPTER IX

EVALUATION OF THE rESTS

It is desired to find a Cest for block differences for an e3,'2erimental

model which has block effects with a fixed portion added to a regression

portion.
2 2

In looking for a test one turns naturaily to a X test when a is
2.

known or an F-test when u is estimated. To study the variation of the

test 3tatistic with the covariate, the matrix of the quadratic form is

expanded in eigenvectors.

[K + P(x)]'v
r-l - - -xi 2

2 T-X) 2 y -i=l xi t

It is noted that the numerators of the fractions would add nicely to

[f + P(x) I[-K +- P(x)] , but with unequal y xs in the denominators of the

fractions su.ch an operation is not pernissible. Clearly an upper limit

on TWx) could be found using the minimum yxi and a lower limit would

result using the maximum of the y xis . This assumes, of course, that the

Y x's are known. The temptation to average the 'xi s would occur to an

applied person who had not been too thoroughly influenced by the mathe-

matical quest for exactness.

The applied mathematician vuPqht very well average the y xi'S to get

an approximation ef -4x). Then if he wore a.•kt-d "Does your approximation

of "qxl have the same critical point (r- function) Ci?" he might say
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"Only if th" Y's are exac].lv alike, otheraise I hedge a little. Thatxi

is, where Lhe y ,i s are very different it takes more to surpyrise me at the

same c--level. However, in all honesty, if . have no reason to believe the

2
rooLs are 7erv different, I just go ahead and use 2 Cr- I

The stati,4tic

S x) (1 + xP K x11

wh e re

re(x) --

22 2v xi --t--! -• (r-l) , - I Yx

does the averaging and hedging with the mathematic-a] justification of

fitting a multiple of a central x with a certain number of degrees of

freedom. With this justification for what the applied mathematician might

do instinctively, the test is found to L- insensitive to differences in

roots when x is large.. 'en a is small, checks (finding the 0 0 2

"3' ' and hence m(x) values defined in Chaptor VI) are tedious, but not

Tf 2
nearly so tedious as solving ,.x) = (I C for xr-l

The expansion of Týx) has another result. Tt shcws that the T¶x)

statistic is weighting tho various contrasts of the block unevenly as we

iiav more or loss informatiojn about them. Crantina, the general wisdom of

tuch a -.vw,, if we :ir, , ,it v int.re.;ted in ,l!.I , ,h lck.,, - #x) is

not, neallV t l inq us- wh,,t w, w ti lt kz,,. thod i , " x' qiv-'s an rxact

aIn!.we'r to tih' a: ~~Imtt~ At hanrd. X) , :4 Cith~,' r h and.. giv es

X1 *'111,rclxnt- ade~n--wý-r t~ *X§.r'~ ~r i. or'r iniinefl

tho e,, i r,ý- -f thq*!:ta t-t a
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The T.x) test is uni formly most powerful against a set of alternatives

which ray not be of particular interest. Of interest in regard to this

point is work by Reisch and Webster (6], Scheffe [8] aind i-isu [4]. f--e ý.e-

di rection of power offered by Y x) should more than compensate for the

errors incurred by the approximate nature of the test.

The R'x) test which is the S(x) statis5tic evaluated against the

critical function )f T(x) i a further apploximation. R(x) is a very good
approximation of S(x) for hign 't-levels and seems to a]o- give good results

wnen ci is low. Y(x) has the further intuitively appealing characteristic

of always yielding a set of X values for which the test is significant

which is of the interval or interval-complement form.

The test R(x) and the resulting set of X values, P., are simpleT

and practical tools which should find use in industry and. in the social

sciences. They are well suited to the large a situations in which one is

particularly concerned (worried) about not recognizing block differences

when they occur. The usefulness of these tools in sc-ientific research

would be increased immeasurably with a lower bound for m(x) when the co-

variate block wears are not e-,ual and with some study into the closeness

of the approximtting distribution.

Althou'.h this work has been developed for a two-way classification

rodel with a covariate, it is eqt.ally valid when the treatment effects are

0. Then we are talkirg about comparing simple regrsions based on t

replications fror. z -if.frent sources and the M matrix is diagonal in that

case.

Work 1i current beir.n d-naw by the author to extend these results to

comAlarv muttiple reqresron,-t from different sources. Tn these cases, the

$-tv' statistic addressrs it-sc~l more directly to the,- r ,1cm at hand than
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does a T-type statistic, and it will greatly simplify the problem of

finding sets of points for which the test is significant. However, there

may be a number of other cases in which one would rather not accept the

unequally weighted contrasts of the conventional sum of squares for re-

gression test. Armed with some facts about the closeness of the approxi-

mations it is possible than one might wage war on many fronts against the

wide-spread use of ý' (X'X)ý to test the effects of 8 when ax + e.

ir
I

I



APPENDIX I

THE MATRIX (I - J) (I - (I j)
r - r

1 j)I 1 A)-1( 1 j hr aj
The matrix (I - J) (I - A'A) (I - J) where A a and

r r r ijt xr

a - (qx) j°--3 where (qx) j L.X. - x
aj = (x 2 occurs in this work as aij (qx). 1) *)

special case of the matrix (I _ J)M(I J - j) where M = R-I(I _ AIA)-IR-lI
r r r

and R is a diagonal matrix with jth element (qx) j . If the covariate values

are controllable, he elements of R can be expected to be made very close

to the same values. Ir Cox's example [1] the covariate values in each

block are the digits 1, 2, 3, .. , t so that R would be the constant

IFtimes an identity matrix.
-1

The R matrix is clearly ncnsingular so the nonsingularity of M"

depends on the matrix (I - - A'A). Singularity of this matrix could
r

result only from A'A being of rank one. This followis from the positive

semi-definite nature of A'A and that its trace equals r

r r
Let -r A'A - v , then (I - 1 A'A) = V (1 - Xi)vivy , where

r rii.l

X " 1 and 0 < Ai I for all i. Hence the only way to produce a 0-root

i
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of (I A'A) is for one to be equal to 1 and the others to be 0. Inr i f 2 k

that case - A'A = lv v! where Vk= r for all k. That is, a a,j 1r -i-i VI=ij

for all i and i' in other words, each a. vector, vith elements aij, is

identical to all other aj, vectors, or to their negative value. Symbolically,

A = (a, -a, -a, a, ... , a). If this were the case, one linear function

of ýj's and ,p would be hopelessly confounded with one linear function of

treatments, +-hus accounting for the singularity.

If the covariate is uncontrollable, such an occurrence is most im-

probable, and if the covariate is controllable the situation will be

avoided.

One desirable case of singularity should be noted here. If A'A = J

then p will be confounded with treatments leaving the ' 's estimable. Such

mcthematical neatness is only possible if the covariate is controllable,

and only desirable if there is no interest in examining treatments or mean

regression.

Under the above very rigid restrictions the A matrix could be written

as [diag(a r)J or A = (a, a a, a, t' , a) where the elements of the
1 txr----

vector a are a Then equation (3) of Chapter II becomes

a Y~ ~. a. jy- i

L aiYi 2  a. y.i

1 2 2(I J) + ýi)

Sair ai Y. jLI

where

R -wI

RIW
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and

-[a' a (I - =
Wr-

variance

2 2

i. + z. = -(I - - J) + -(I -- J)t r 2 r

Hence,

2(. 1 +1 1K + z -- N•(K + z8, a -( + (2 (I--J)I
- t W2

when A'A - J and R - wI

Assuming (I - 7 A'A) to be L.-nsinuliar by design or happenstance,

one need be wary only of near singularit-, when the primary eigenvector of

the A'A matrix, that is, the vector corresponding to the largest eigenroot

is not proportional to 1 or nearly so. To clarify this point consider

first a desirable A'A matrix of the following form.

Sp p p p"

i p P P

p 1 p p

1 1 1 r-l

1 IAA 1= (l-p)i +i IPJ = +rl• :Ii1+ r r-(l-o) vivt
r r. r, r -- r r i-

"where

1j a 0 for all i

and

"V'V' -1 if i i'

VIj~iI - 0 if i i#
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Then

I A A'A (r-1) (1-P) 1 r-, (1-p) !

r r r + i r - ivi

and

r-i:• ~(I -=(-)(-)[-i]rlA'A)- r El11.+ r V.,vrr-r1--
( r-'A (r-1) (1-p) r- 1 + -- P V.V.

The full matrix (I - - j)(I - 1 -. ,A)- (i - - J) then becomes
r r r

r-1 r
iir(1-p) 1 1

The matrix has r-i identical eigenroots of magnitude r
r-(l-p)

r-1
These roots are between 1 and 7- resulting in a trace between r-1 and

(r-1)
r..2

That is, even a p ';aluz very near 1 does not destroy the balance of

the covariance matrix although it makes the I - 1 A'A matrix very nearly
r

singular.

However, this property is lost if the A'A matrix is of a form such as

1 -p -p -"

r -p P 1

Then

1 11

A A I +-I

r 1+1 1)
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And

(1 AA)-I V .

( r-r - (r-1)(1-P) r + r-(l-p) --ii

-i r-r-(l- )+-rp

r r2P1

r-(1-p) I + (r-l) (l-p) [r-(l-p)] 1

111--111

The (I - J J) (I - 1 A'A)-(I J 1 J) matrix becomes
r r r

r2 (1 i)
r ('11 J)r)r- (1-p) (I-r J)-r 1( )[E Ti 1 (r - Jr ii(-r

The roots of this matrix are not balanced and the trace of this matrix is

(r-l) + r - (r-2) 2

r-(1-p)+ M ) 11 -)

In this form, it is apparent that the trace of the covariance matrix can

be made as large a3 anyone chooses by making p very close to 1 . If P is

very close to 1, the primary eigenvector of the A'A matrix would be

1 (-1 1 1 1) .

These two illustrations of near singularity are presented to aid the

reader in understanding the types of A'A matrices which will yield un-

balanced eigenroots and large trace values for the covariance matrices of

block regression effects. It is these conditions which will cause the

tests for block effects to give poor results. By way of summary, these
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conditions are near singularity, caused by a nearly degenerate A'A matrix,

.unless the primary vector of the A'A matrix is proportional to a vector

of +1's
1 J(I 1 AA-I

Furthermore, the r-l eigenroots of the matrix (I - r - - A'A)
r r

x(I - -1 J) are all greater than 1 . To prove this point let
r

r
(I - 1 A'A)- = 1 ViV!

r 1--1i=l 1

where 0 < X. < 1 and hence 0 < 1-A. < 1 That is, Q has r roots greater

chan 1 Then

:.• I = v.v.' ,

.. vivi,
1

Note that

1 > 0 for all iIi
Hence, Q-I is a positive definite matrix. It then follows that

(I - 1 J) (Q-I) (I - J) is a positive semi-definite matrix with r-l posi-
r r

tive roots and one zero root corresponding to the eigenvector 1

Therefore,

r-i
I 1 1 1' + I

ri>0

r-i

(I - . -0 1 1 + I ni•u
r r r i-I
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1 1 1 1r-1
( j) + 1 j 1' + 'I (1 '*(I- , ) Q)(I-r r r -- )PPi

i-i

and

r-1
)-- Q -- (I= ' (1 . n .! and 1 + n, > 1

r r -- 1

Hence, I - 1j) (I - 1- A'A)-(I - J) has r-1 non-zero roots allr r r
11greater than 1 . And if R wI, then (I - r J)M(I - J j) has r-i rootsr r

1 •
all greater than -

With this lower bound on the roots and the upper bound furnished by

the sum of the roots being equal to the trace of the matrix, we can often

be assured of a high degree of balance among the roots without actually

finding them.
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CHAR'&S AND GRAPHS
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